

PII: S0040-4039(97)01095-2

AZIRIDINE 2-CARBOXYLATE ESTER MEDIATED ASYMMETRIC SYNTHESIS OF $\alpha\text{-ALKYL}\ \beta\text{-}$ AMINO ACIDS

Franklin A. Davis,* G. Venkat Reddy and Chang-Hsing Liang Department of Chemistry, Temple University, Philadelphia, PA 19122

Summary: The highly stereoselective ring opening of N-tosylaziridine 2-carboxylate esters with LiAlH₄ followed by oxidation of the ensuing *syn* alcohols results in a highly efficient 4 step asymmetric synthesis of α -methyl β -amino acids from N-sulfinylaziridine 2-carboxylate esters. © 1997 Elsevier Science Ltd.

The asymmetric synthesis of α -alkyl β -amino acids is of current interest because they are constituents of biologically active natural products¹ and precursors of the β -lactam class of antibiotics. Furthermore, substitution of α -amino acids by β -amino acids is useful in the preparation of peptide analogs with increased activity and enzymatic stability.² Methods for their synthesis³ include the Michael addition of chiral secondary amines to α , β -unsaturated esters,⁴ the homologation of α -amino acids,⁵ alkylation of enolates derived from perhydropyrimidin-4-ones⁶, additions to imines,⁷ and enzymatic resolution.⁸ Many of these procedures are multi-step, affording the product in low overall conversions or requiring separation of diastereoisomers. For these reasons the development of more efficient methods for the asymmetric synthesis of this important class of β -amino acids is highly desirable.

N-Activated aziridine 2-carboxylate esters 1 are useful building blocks for the asymmetric construction of α -amino acids because they undergo stereocontrolled ring-opening at C-3 with inversion of configuration to give β -substituted α -amino acid (Scheme 1).^{9,10} Indeed, recent studies in our laboratory have demonstrated the application of cis-N-sulfinylaziridine 2-carboxylate esters 1 (Z = ArS(O)-) in highly stereoselective asymmetric synthesis of α -amino acids,¹⁰ α -methyl¹¹ and β -substituted α -amino acids,¹² the antibiotic thiamphenacol,¹³ β -hydroxy α -amino acids,¹⁴ β -hydroxy α -methyl α -amino acids,¹¹ the protein kinase C inhibitors D-*erythro* and L-*threo*-sphingosine,¹⁴ and

$\begin{array}{ccccccc} NH-Z & C-2 & R^{1} & CO_{2}R & C-3 & Nu \\ R^{1} & R^{2} & R^{3} & Nu & Nu & R^{1} & CO_{2}R \\ R^{2} & R^{3} & R^{3} & Nu & R^{1} & R^{2} & R^{3}NH-Z \\ & & & & & \\ & & & & & \\ \beta\text{-amino acid} & & & Z = Ts, \ p\text{-TolyIS(O)} & & \alpha\text{-amino acid} \end{array}$

Scheme 1

the cytotoxic antibiotic (*R*)-(-)-dysidazirine.¹⁵ However, to prepare β -amino acids from 1, requires ring-opening at C-2 which is relatively rare.¹⁶ On the other hand, Tanner¹⁷ and others¹⁸ have shown that C-2 aziridine ring-opening occurs in the corresponding aziridino alcohols 1 (CO₂R = CH₂OH). We make use of this strategy in the first asymmetric synthesis of α -methyl- β -amino acids from aziridine-2-carboxylate esters.

2-Methyl-N-sulfinylaziridines **3a-b** were prepared as previously described by addition of the lithium enolate of methyl α -bromopropionate to sulfinimines (*S*)-**2a-b** (Scheme 2).¹⁰ (*S*)-(+)-N-(propylidene)-*p*-toluenesulfinamide (**2b**) was prepared in 67% yield by reaction of (1R,2R,5R)-(-)-menthyl (*S*)-*p*-toluenesulfinate (Andersen reagent) with 1.3 equivalents of LiHMDS and 1.1 equiv. *n*-propanal at -78 °C as present earlier.^{19,20} Following separation of the diastereomeric E/Z-aziridines by flash column chromatography (+)-(2R,3S)-**3a** and (+)-(2R,3S)-**3b** were isolated in 84 an 76% yield, respectively.²⁰ Oxidation of the N-sulfinyl aziridines **3** was accomplished using 2.0 equiv. of 60 % *m*-chloroperbenzoic acid (*m*-CPBA) in CHCl₃ to give the N-tosyl derivatives **4** in nearly quantitative yield. Reduction of **4** at 0 °C with 1.0-1.2 equiv. of lithium aluminum hydride (LiAlH₄) afforded exclusively the *syn* alcohols (2*R*,3*R*)-**6a** and (2*R*,3*S*)-**6b** in 90-95% yield.²⁰ 2-Methyl-3-(*N*-tolylarnino)-3-phenyl-1-propanol (**6a**) has been prepared in racemic form as a 1:1 *syn:anti* mixture

via the hydroboration of 2-methyl-1-(N-tolylamino)-1-phenyl-2-propene,²¹ and (2S,3R)-2-methyl-3-(tosylamino)pentanol (**6b**) was prepared in 10 steps from L-aspartic acid.²² The fact that the reductive ring-opening of **4** occurs at C-2 with inversion of configuration strongly supports the suggestion by Tanner et al.¹⁷ that hydride is delivered intramolecularly via the aluminum hydride complex of the intermediate aziridino alcohol; e.g. **5**.

Next the amino alcohols **6** were oxidized to the β -amino acid derivatives **7** in good to excellent yield by treatment with 4.4 equiv. of NalO₄ and a catalytic amount of RuCl₃. Attempts to remove the tosyl group in **7a**, as previously described,¹² by heating with 48% HBr/PhOH gave uncharacterizable materials. However, reduction with Na/liq. NH₃ afforded (2*R*,3*F*)-(+)-2-methyl-3-amino-3-phenylpropanoic acid (**8a**)²² in 79% isolated yield. The tosyl group in **7b** was removed uneventfully with 48% HBr/PhOH to give (2*R*,3*S*)-(-)-2-methyl-3-aminopentanoic acid (**8b**)²³ in 95% isolated yield. The fact that the **8a** and **8b** were obtained as single diastereoisomers (¹H NMR of the crude mixtures) indicates that removal of the tosyl group occured without epimerization at the C-3 nitrogen stereogenic center. The crude amino acids were purified using a Dowex 50X8-100 ion exchange resin and isolated as the hydrochloride salts by dissolving in conc. HCl and concentrating. Their properties were identical to authentic samples and obtained in >97% ee.²²⁻²⁴ Amino acid **8b** is the enantiomer of the β -amino acid found in the marine cytotoxic antitumor desipepties dolastatin D, ^{1e} 10 and 11.^{1a} This enantiomer can be readily prepared starting from (*F*)-(-)-**2**.¹⁹

In summary, a short, highly efficient four-step stereoselective asymmetric synthesis of α -alkyl β -amino acids **8a** and **8b** in 57-81% overall yield from N-sulfinylaziridine-2-carboxylate esters **3a** and **3b** is described.

Acknowledgments. This work was supported by a Grant from the National Institutes of Health. We thank Joanna M. Szewczyk for preparing sulfinimine (+)-2b.

REFERENCES AND NOTES

- (a) Mynderse, J. S.; Hunt, A. H.; Moore, R. E. *J. Nat. Prod.* **1988**, *51*, 1299. (b) Pettit, G. R.; Kamano, Y.; Kizu, H.; Dufresne, C.; Herald, C. L.; Bontems, R. J.; Schmidt, J. M.; Boettner, F. E.; Nieman, R. A. *Heterocycles* **1989**, *28*, 553. (c) Namikoshi, M.; Rinehart, K. L.; Dahlen, A. M.; Beasley, V. R.; Carmichael, W. W. *Tetrahedron Lett.* **1989**, *30*, 4349. (d) Beatty, M. F.; Jennings-White, C.; Avery, M. A. *J. Chem. Soc. Perkin 1*, **1992**, 1637. (e) Sone, H.; Nemoto, T.; Ishiwata, H.; Ojika, M.; Yamada, K. *Tetrahedron Lett.* **1993**, *34*. 8449. (f) Bates, R. B.; Brusoe, K. G.; Burns, J. J.; Caldera, S.; Cui, W.; Gangwar, S.; Gramme, M. R.; McClure, K. J.; Rouen, G. P.; Schadow, H.; Stessman, C. C.; Taylor, S. R.; Vu, V. H.; Yarick, G. V.; Zhang, J.; Pettit, G. R.; Bontems, R. *J. Am. Chem. Soc.* **1997**, *119*, 2111.
- A.F. Spatola, In Chemistry and Biochemistry of Aminoacids, Peptides and Proteins; B. Weinstein, Ed.; Marcel Dekker: New York, 1983; Vol. 7, pp 331-333 and references cited therein.
- For reviews on the asymmetric synthesis of β-amino acids see: Cole, D. C. *Tetrahedron* 50, 9517 (1994). "Enantioselective Synthesis of β-Amino Acids," Juaristi, E. Ed. Wiley-VCH, New York, 1997.
- (a) Davies, S. G.; Walters, I. A. S. J. Chem. Soc. Perkin I, 1994, 1129. (b) Hawkins, J. M.; Lewis, T. A. J. Org. Chem. 1994, 59, 649.

- 5. Burgess, K.; Liu, L. T.; Pal, B. J. Org. Chem. 1993, 58, 4758.
- (a) Braschi, I.; Cardillo, G.; Tomasini, C.; Venezia, R. J. Org. Chem. 1994, 59, 7292. (b) 6. Juaristi, E.; Quintana, D.; Lamatsch, B.; Seebach, D. J. Org. Chem. 1991, 56, 2553. (c) Juaristi, E.; Escalante, J. J. Org. Chem. 1993, 58, 2282.
- 7. (a) Kunz, H.; Schanzenbach, D. Angew. Chem. Int. Ed. Engl. 1989, 28, 1068. (b) Corey, E. J.; Decicco, C. P. Newbold, R. C. *Tetrahedron Lett.* **1991**, *32*, 5287. Cardilli, G.; Tolomelli, A.; Tomasini, C. *J. Org. Chem.* **1996**, *61*, 8651.
- 8.
- 9. For a review on optically active aziridines see: Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33. 599.
- 10. For leading references to optically active aziridine 2-carboxylate esters see: Davis, F. A.: Zhou, P.; Reddy, G. V. J. Org. Chem. 1994, 59, 3243.
- Davis, F. A.; Liu, H.; Reddy, G. V. Tetrahedron Lett. 1996, 37, 5473. 11.
- Davis, F. A.; Liang, C.-H.; Liu, H. J. Org. Chem. 1997, 62, 3796. 12.
- Davis, F. A.; Zhou, P. Tetrahedron Lett. 1994, 35, 7525. 13.
- 14.
- Davis, F. A.; Reddy, G. V. *Tetrahedron Lett.* **1996**, 37, 4349. Davis, F. A.; Reddy, G. V.; Liu, H. *J. Am. Chem. Soc.* **1995**, *117*, 3651. 15.
- For examples of C-2 ring-opening in racemic aziridine 2-carboxylic acids see: Molander, G. 16. A.; Stengel, P. J. J. Org. Chem. 1995, 60, 6660. Righi, G.; D'Achille, R. Tetrahedron Lett. 1996, *38*, 6893.
- 17. Tanner, D.; Gautun, O. R. Tetrahedron, 1995, 51, 8279.
- Kawabata, T.; Kiryu, Y.; Sugiura, Y.; Fuji, K. Tetrahedron Lett. 1993, 34, 5127. Ibuka, T.; 18. Nakai, K.; Akaji, M; Tamamura, H.; Fujii, N.; Yamamoto, Y.; Tetrahedron, 1996, 52, 11739.
- Davis, F. A.; Reddy, R. E.; Szewcsyk, J. M; Reddy, G. V.; Portonovo, P. S.; Zhang, H.; Fanelli, D.; Thimma Reddy, R.; Zhou, P.; Carroll, P. J. *J. Org. Chem.* **1997**, *62*, 2555. 19.
- 20. Selected physical properties: (S)-(+)-2b: oil, $[\alpha]^{20}D$ +385 (c 2, CHCl₃); E-(Ss,2R,3S)-(+)-3b: oil; $[\alpha]^{20}D + 72.0$ (c 0.30, CHCl₃); *E*-(*2R*,*3S*)-(+)-**4b**: mp 84-86 °C, $[\alpha]^{20}D + 24.4$ (c 0.55, CHCl₃); syn-(2R,3R)-(+)-6a: mp 159-61 °C, $[\alpha]^{20}D = +26.1$ (c 1.0, CH₃OH); syn-(2R,S)-(-)-6b: mp 73-75 °C, $[\alpha]^{20}$ - 35.0 (c 0.60, CHCl₃); svn-(2R,3R)-(+)-7a: mp 144-46 °C, $[\alpha]^{20}$ = +49.1 (c 1.1, CHCl₃); *syn-(2R,3S)*-(-)-**7b**: oil; [α]²⁰D -36.5 (c 0.62, CHCl₃).
- 21. Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1991, 56, 1027.
- Jefford, C.W.; McNulty, J. Hel. Chim. Acta. 1994, 77, 2143. 22.
- 23. Davies, S. G.; Ichihara, O.; Walters, I. A. S. J. Chem. Soc. Perkin 1 1994, 1141.
- Bates, R. B.; Gangwar, S. Tetrahedron: Asymmetry 1993, 4, 69. 24.

(Received in USA 5 May 1997; accepted 27 May 1997)